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Finite Element Analysis of Planar Microwave Networks

P. SILVESTER

Abstract—The port admiftance matrix of a planar network is
formulated in terms of certain harmonic functions related to the port
voltages and the network geometry, together with the natural modes
of the network with all ports shorted. The necessary harmonic func-
tions and eigenfunctions are found using a finite element technique,
for which general-purpose computer programs already exist. An ad-
vantage of the method is that the admittance matrix appears in
partial-fraction form with geometric data separated from frequency,
leading to inexpensive computations where recalculation at various
frequencies is required.

INTRODUCTION

LANAR multiport microwave networks offer the de-
Psigner considerable freedom as compared to stripline

circuitry, not only in regard to physical size and shape,
but more importantly, to such electrical characteristics as
impedance level. Considerable interest has therefore arisen in
their analysis and design in recent years [1].

A very comprehensive theory, leading to a partial-fraction
representation of the admittance matrices of the general
N-port, was given by Civalleri and Ridella [2]. In applica-
tions, the full generality of this theory is not always required;
a simplified version, based on a somewhat more idealized for-
mulation of the problem, is often entirely adequate as demon-
strated by the results of Bianco and Ridella [3]. Their anal-
ysis, however, was restricted to rectangular circuits, for which
certain eigenfunctions are analytically known. While interest-
ing in pointing out certain possible network behavior patterns,
restriction to rectangular plates robs the designer in large
measure of precisely that flexibility promised by planar net-
works. An extension of their formulation or an alternative
formulation not so geometrically restrictive would therefore
seem desirable. An alternative approach published concur-
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rently by Okoshi and Miyoshi [4] formulated the field prob
lem of the planar circuit in terms of a Fredholm integral equa-
tion—similarly to Spielman [5]—which was subsequently
solved by a collocation method. This approach lends itself
well to computational implementation and does not involve
undue geometrical constraints. A drawback of this technique,
however, is that the resulting network characterization (be it
a transfer matrix or an admittance matrix) is valid at only
one frequency; for any other frequency, the entire integral
equation analysis must be repeated.

The analysis given below is geometrically as little re-
stricted as the method of Okoshi and Miyoshi, but the net-
work admittance matrices which result are in partial-fraction
form. Consequently, it is only necessary to solve the field
problem for a given network once; there is no need for re-
peated analyses at different frequencies. Thus although the
new method differs fundamentally from those reported earljer,
it combines in one the advantages of both existing methods.

ForMULATION OF FIELD PROBLEM

For purposes of analysis, exactly the same idealizations
will be employed in this paper as in previous ones [3], [4].
The planar network will be assumed to consist of a highly con-
ductive plate placed on a dielectric substrate backed by a con-
ductive ground plane. Both the dielectric and the ground plate
are assumed infinite in extent and analvsis will be carried out
for the equivalent structure of two similar plates separated
by an infinite dielectric sheet of double thickness, as in Fig. 1.
It will be assumed that the plate lateral dimensions are very
much greater than the dielectric thickness, so that the electric
field may be assumed everywhere normal to the two plates,
E=1,E, That is to say, fringing fields at plate edges are
ignored. The network is assumed to be fed by N-ports ar-
ranged along its periphery in such a way that no two-ports
have any points in common along the periphery. Within the
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Fig. 1, Arbitrary polygonal planar network, analytically treated
as two plates separated by a dielectric sheet.
7
r
R
r
"
Fig. 2. The polygonal network plate of Fig. 1, showing nomenclature

for analysis. Note that I' refers to the open portion of the network
boundary only.

dielectric-filled space between the plates the electric field must
satisfy

(VP4 Q)E, =0 1

where  denotes the normalized frequency:

Q = /e (2)

As is well known [6], the magnetic field in the dielectric must
then be given by

1
H=—(1, X VyE.) 3)
Jwu

where V,, denotes the transverse gradient operator. Above
and below the planar network, there can exist no magnetic
field related to the internal fields. In accordance with Max-
well's equations, there must therefore low in the upper plate
a surface current whose density is given by

1
J=—V,E, (4)
Joou

All fields are understood to be time harmonic. Along the open
plate edge I', the surface current density cannot have an out-
ward normal component; hence (4) requires that along T’

OE,
n

= 0. (5)

On the other hand, along the section of the periphery covered
by the kth port, say vz, an outward current is permissible. Its
value, according to (4), must be

1 dE,

Jjoud 4, on

It is frequently most convenient to formulate the problem
not in terms of the field E, but the RF voltage v between cor-
responding points of the upper and lower plates. Let % be the
plate spacing. Since the field has been assumed entirely
z-directed, v=hE,; the two formulations are entirely equiva-
lent. If all ports are taken to be sufficiently narrow and to be
fed by pure TEM mode lines, the following boundary-value
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problem results over the region of the upper plate, as shown
in Fig. 2

(V2 4 9% = 0, in R (7)
v

— =0, onT 8
an

v = Vy, onvyy,, k=1,2,---,N. (9

This is a mixed scalar boundary-value problem in the ordinary
form and may be solved as indicated below.

ForRMAL SOLUTION OF THE FIELD PROBLEM

The boundary-value problem defined by (7)—(9) comprises
a homogeneous differential equation in R with inhomogeneous
boundary conditions. For numerical solution, homogeneous
boundary conditions and an inhomogeneous differential equa-
tion are to be preferred. The latter situation may be brought
about by a simple change of variables. Let # denote a func-
tion which satisfies the boundary-value problem

Viu = 0, in R (10)
ou
— = onT (11)
on
u = V}c, on e, k= 1 2, coe e ,N. (12)
Now let
v = u -+ w. (13)

Substitution in (7)-(9) then produces

(V24 QD = — Q%, in R (14)
Jw

— =0, onT (15)
n

w =0, on . (16)

In this way, solution of the boundary-value problem (7)-(9)
has been reduced to the solution of two other boundary-value
problems. [t remains to write the solutions in such a form as to
exhibit clearly their dependence on the port voltages.

To begin, assume that all port voltages V} are zero (port
shorted) except for the ¢th, which will be assumed to have
unity value:

Vi=0, k1
= 1, k=1 17
Let the boundary-value problem (10)—(12) be solved, subject
to the restriction (17), =1, 2, 3, - - -, N. Let¥; denote the

4th solution. For any possible set of port voltages {V3}, the
solution of (10)-(12) is exactly

N
U = Z V:,;\bi.

(18)
i=1
Next, consider the eigenvalue problem defined by
(V2 4+ Q)w = 0, in R (19)

and the boundary conditions (15)—(16). Let the eigenvalues
and eigenfunctions which satisfy it be ; and ¢, 2=1, 2, - - - .
These eigenfunctions may be used as basis functions for
Galerkin projective solution of (14)—(16). Let w be expanded
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as

= Z Wi

k=1

(20)

where the W; are coefficients. Substitution of (18)~(20) into
(14) then produces

0 N
WV D) = — 23 Vs (21)
k=1

7=1

which may be written, since ¢y satisfies the Helmholtz eigen-
value problem, as

N
~ Q23 Vabs.

=1

> Wi — ) =

b=l

(22)

Let (22) be multiplied by ¢, and integrated over the network
region R. Since the functions ¢y constitute an orthogonal
family, only the member 2=m of the left-hand summation
survives. Therefore

Q2 1 il

Wy = >V f Vidr dR.
2 — Q2 =1 R
f i dR
R

Since the port voltages are assumed to be known, the coeffi-
cients Wy are readily calculable at any frequency. The com-
plete field solution is therefore
f Yipr AR
R

92
Z AED> o
purif
f ¢:? dR

It should be noted that the boundary-value problems which
define functions ¥; and ¢ are of a form which can be solved
by existing computer programs with good accuracy [7]. For
purposes of the above discussion, therefore, they may be
regarded as known once the boundary-value problems have
been stated.

(23)

(24)

ADMITTANCE MATRIX OF THE GENERAL N-PoORrT

Rarely is the actual RF voltage distribution over the net-
work desired; usually, the designer wishes only to have a
terminal description, preferably as an impedance or admit-
tance matrix. The latter, as will be seen, is readily available.

In terms of the RF voltage, the outward current at the mth
port (6) reads

1 9y
Iy =—— — ds.

25
Jouph 5, On (25)

Substitution of (24), followed by some algebraic manipula-
tion, then produces

e E(E

=0 02— Q2

Bmi(’c)) Ve (26)

where the NX N matrices B® are defined elementwise by

_f&%

(0) —
B

27
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with £o=0 understood and

f Vi dR

Bp® = ——
f ordr " "
R

k=1,2,---,N. (28)

The currents in (26) are taken as outward flowing in keep-
ing with the outward normal convention of field theory. Tak-
ing network currents to have inward-directed references, the

admittance matrix of the N-port thus reads

\/e/—ui

V=34
J h k=0 ka—ﬂz

B®,

(29)

This expression, it may be noted, is in partial-fraction or
Foster canonic form, with the eigenfrequencies of the network
cavity corresponding to the admittance poles. The matrices
B™ have as many rows and columns as the network has ports;
they are pure numerics, their elements depending solely on
the geometric shape and size of the network. Consequently,
once the geometric matrices B® have been computed, the
network admittance matrix at any frequency may be obtained
to an adequate accuracy by summing the first few terms of
(29)—a trivial computational task.

From the form of (29), it is clear that the admittance
matrix ¥ cannot be symmetric at all frequencies unless each
and every one of the matrices B®, k=0, 1, - - -, is symmetric
also. However, (27) and (28) do not exhibit any symmetry
in the indices m and 4. Since the planar network under con-
sideration is passive, linear, and bilateral, symmetry must
obtain. It is therefore desirable to recast the latter two equa-
tions in a form such as to prove symmetry explicitly.

The functions ¥, are interpolative portwise, according to
(12) and (17); the functions ¢y all have zero normal derivative
along the network boundary, except at the ports. Therefore

(30)

v O% o  On

where

N
6R=I‘U<U')/i>

=1

is the boundary of the network. This closed line integral,
taken around the network periphery, may be written in the
form given by Green's theorem:

f ¢m—ds— f Ym V2 dR — f 5V, dR

d
+6 a2ma G
IR on
In accordance with the definitions given for ¢ and ¥, above,
either ¢ or the normal derivative of ¥, is zero at each and
every boundary point. The rightmost integral in (31) there-
fore vanishes. By definition, the functions ¥, are harmonic;
therefore the middle integral on the right side of (31) vanishes.
Furthermore, ¢ satisfies Helmholtz’s equation in R, so that
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(31) simplifies to

Or
1[/,,, —_ dS = — Qk2f \brn‘bk dR
R On R

Substitution of (30) and (32) into (29) now produces the alter-
native form for Bn®, B=1,2, + -« :

R R

[
R
where symmetry is obvious.

Symmetry of the matrix B® can be proved by a similar
development. Equation (30} is still valid if ¢y is replaced by
¥;; using Green's theorem again, one thus obtaing

(32)

Bui® = — 02 (33)

[ f’.:_ids _ wa,..w,,,, IR + fﬁm% IR, (34)

Ym [

The rightmost term again vanishes, since ¢; is a harmonic
function. There results, finally,

Bmi(o) = - f V‘P1V¢m dR (35)
R

again clearly symmetric.

COMPUTATIONAL FORMULATION AND TESTS

To obtain an economic computational implementation of
the above analytic development, the finite element method,
using triangular elements, will be employed. Let the planar
network region R be triangulated in such a way that each tri-
angle side along the periphery of R is either entirely along one
port or else touches ports at most at its end points. Let the
functions ¥; and ¢ be approximated by continuous piecewise
polynomials on each triangle, as is usual in the finite element
method [7]-[9]. The functions themselves are then represent-
able by vectors of interpolation coefficients ¥; and ®;. It is
readily shown [9] that if IZz and ¢ are the polynomial approx-
imations to ¥; and ¢z, respectively, then

f Yibr dR = ¥,/ T®, (36)
R

and

f Vi Vi dR = ¥/SY,,. (37

B .
Here primes denote transposition, .S is the matrix of Dirichlet
integrals of the interpolation functions associated with the tri-
angulation, while T is the metric of the interpolation func-
tions. These matrices are automatically produced by readily
available Fortran subprograms [7], so that no further theory
need be developed for their construction. Furthermore, the
approximate harmonic functions ¢; and the approximate
eigenfunctions ¢y are determined by the same general-purpose
finite element programs in the form of coefficient vectors ¥,
and ®;. Using (33) and (35) as the computational prescription,
one thus obtains

U, T80 T
L, k=1,2,---,N (38)

Bpi®) = — O
&,/ Td,
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and

By = —¥/SV,,. (39)
Clearly, the programming effort here is minimal, if the stan-
dard programs are used without alteration. Their use in this
form is perhaps not quite so economic as might be that of a
special program written particularly to produce admittance
matrices of planar networks. The latter course may have
much to recommend it if large numbers of networks are to be
analyzed, as might be the case in an iterative synthesis pro-
cedure.

The computational procedure given by (29), (38), and (39)
is quite inexpensive to execute. For K terms in the series in
(29), evaluation of the admittance matrix at each frequency
requires approximately 3K N? accumulative (multiply-add—
store) operations. For example, for a 30-term expansion
describing a 4-port network, 155 operations are required or
about 5 ms on a reasonably fast computer. The initial over-
head of solving the necessary boundary-value problems and
computing the matrices B® is approximarely 203 operations,
where M is the order of the finite element matrices S and T.
These timings do not depend on network shape, except as it
may be reflected in the matrix order M.

An alternative procedure might be to employ (27) and (28)
directly as computational algorithms. Such a course of action
has the drawback of more extensive programming, but results
in slightly faster execution times. The normal derivatives of
polynomial approximations are clearly also polynomials, so
that all differentiations and integrations can be carried out
exactly (aside from roundoff error). A program to implement
this approach was also written using the normal differentia-
tion operators published recently [10] in conjunction with
Newton-Cotes quadrature formulas; the latter choice is nat-
ural since the nodes along one triangle edge for the usual
triangle interpolation polynomials coincide with the nodes of
closed-form one-dimensional Newton—-Cotes formulas. Not
surprisingly, results obtained in this way show only slight
differences from those obtained from (38) and (39). These are
presumably attributable to differences in roundoff error in-
curred by the two distinct arithmetic processes.

The model problem used for program testing is a rectangu-
lar strip L units long and one length unit wide, with the ports
occupying the full width of both narrow ends. Provided L is
much greater and the substrate thickness much smaller than
unity, such a structure constitutes a good approximation to
an idealized parallel-plate TEM transmission line. The admit-
tance matrix of the latter is easily shown to be

. —cot QL
Y =]YOI:

csc QL
] (40)
csc QL

—cot QL

where it is assumed, as usual in transmission line theory, that
no lateral variations in voltage can occur. For this problem,
the necessary functions are analytically determinable. It is
easily verified that the eigenfunctions and eigenvalues are

. kmx kw
¢r = sin — O = — (41)
L
while the port functions are given by
Y= (42)
L
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Fig. 3. Normalized admittances for the model problem. Solid line
denotes Y11, dashed line Y;2. Effect of laterally varying eigenfunctions
is discernible in Y72 at the higher frequencies.

X
o=1——.

I (43)

The matrices B® are in this case easily evaluated. They are

B<o>=}_[‘1 +1}
L+t -1

Because the quantities involved are all determined as surface
integrals, the corresponding numerical processes are not very
roundoff sensitive. For example, Fig. 3 shows the results ob-
tained computationally for the case L=9. The network was
modeled by six identical right-triangular finite elements.
Several computational tests were carried out, using various
degrees of polynomial approximation. To produce Fig. 3,
second-order polynomials were used, so that the matrices .S
and T were of order 21. Computations were carried out in-
cluding elementary matrices B9-B%, Up to the third pole,
Y1 and Yis agree with (40) to four significant figures; since all
calculations were carried out with a 24-bit mantissa, this level
of agreement is considered entirely satisfactory. Beyond the
third pole, inclusion in the computational analysis of laterally
varying eigenfunctions ¢y precludes detailed agreement with
(40)—indeed, it is the approximations inherent in (40), and
not the approximations of the computational analysis which
break down first. This view is substantjated by comparison of
the analytically obtained matrices B®, with corresponding
ones obtained from the finite element analysis.

A variety of different networks has been analyzed using the

(44)

(45)
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new programs. For networks which cannot be treated analyti-
cally, no absolute error assessment can be given. However, the
only mathematical approximations involved in the procedure
are those inherent in finite element solution to find the basis
functions: truncation of the series expansion and approxima-
tion of all functions by interpolation polynomials. It is there-
fore reasonable to expect an overall accuracy consistent with
the accuracy of finite element solution; that is to say, one sub-
stantially higher than warranted by the physical approxima-
tions inherent in the formulation of the problem, as well as the
accuracy achievable in practical microcircuits. The model
problem studies are held to bear out this expectation.

CONCLUSIONS

The method set out in this paper permits admittance
matrices to be computed for arbitrary polygonal planar net-
works. Two distinct advantages over previously existing
techniques render the method attractive. The admittance
matrices are in partial-fraction form and therefore not re-
stricted to any one frequency of operation. Two boundary-
value problems need to be solved initially, but no others are
required subsequently, regardless of frequency or nature of
excitation. The boundary-value problem solution itself is
accomplished by existing finite element programs, so that a
major portion of the required programming work has already
been accomplished.

Suitable programs for admittance matrix production have
been written and tested on simple model problems for which
analytic solutions exist. There appears to be reason to believe
that, as a result of the formulation employed, even relatively
crude finite element models suffice to produce admittance
matrices of an accuracy compatible with the physical approxi-
mations inherent in the problem.
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