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Finite Element Analysis of Planar Microwave Networks

P. SILVESTER

Abstract—The port admittance matrix of a planar network is
formulated in terms of certain harmonic functions related to the port
voltages and the network geometry, together with the natural modes
of the network with all ports shorted. The necessary harmonic func-
tions and eigenfunctions are found using a finite element technique,
for which general-purpose computer programs already exist. An ad-
vantage of the method is that the admittance matrix appears in
partial-fraction form with geometric data separated from frequency,
leading to inexpensive computations where recalculation at various
frequencies is required.

INTRODUCTION

P
LANAR multiport microwave networks offer the de-

1
signer considerable freedom as compared to stripline

circuitry, not only in regard to physical size and shape,

but more importantly, to such electrical characteristics as

impedance level. Considerable interest has therefore arisen in

their analysis and design in recent years [1].

A very comprehensive theory, leading to a partial-fraction

representation of the admittance matrices of the general

N-port, was given by Civalleri and Ridella [2]. In applica-

tions, the full generality of this theory is not always required;

a simplified version, based on a somewhat more idealized for-

mulation of the problem, is often entirely adequate as demon-

strated by the results of Bianco and Ridella [3]. Their anal-

ysis, however, was restricted to rectangular circuits, for which

certain eigenfunctions are analytically known. While interest-

ing in pointing out certain possible network behavior patterns,

restriction to rectangular plates robs the designer in large

measure of precisely that flexibility promised by planar net-

works. An extension of their formulation or an alternative

formulation not so geometrically restrictive would therefore

seem desirable. An alternative approach published concur-
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rently by Okoshi and Miyoshi [4] formulated the field prob

lem of the planar circuit in terms of a Fredholm integral equa.

tion—similarly to Spiel man [5 ]—which was subsequently

solved by a collocation method. This approach lends itself

well to computational implementation and does not involve

undue geometrical constraints. A drawback of this technique,

however, is that the resulting network characterization (be it

a transfer matrix or an admittance matrix) is valid at only

one frequency; for any other frequency, the entire integral

equation analysis must be repeated.

The analysis given below is geometrically as little re-

stricted as the method of Okoshi and Miyoshi, but the net-

work admittance matrices which result are in partial-fraction

form. Consequently, it is only necessary to solve the field

problem for a given network once; there is no need for re-

peated analyses at different frequencies. Thus although the

new method differs fundamentally from those reported earlier,

it combines in one the advantages of both existing methods.

FORMULATION OF FIELD PROBLEM

For purposes of analysis, exactly the same idealizations

will be employed in this paper as in previous ones [3], [4].

The planar network will be assumed to consist of a highly con-

ductive plate placed on a dielectric substrate backed by a con-

ductive ground plane. Both the dielectric and the ground plate

are assumed infinite in extent and analvsis will be carried out

for the equivalent structure of two similar plates separated

by an infinite dielectric sheet of double thickness, as in Fig. 1.

It will be assumed that the plate lateral dimensions are very

much greater than the dielectric thickness, so that the electric

field may be assumed everywhere normal to the two plates,

E= lJZ. That is to say, fringing fields at plate edges are

ignored. The network is assumed to be fed by N-ports ar-

ranged along its periphery in such a way that no two-ports

have any points in common along the periphery, Within the



SILVESTER : FINITE ELEMENT ANALYSIS

Fig. 1. Arbitrary polygonal planar network, anal ytically treated

as two plates separated by a dielectric sheet.

‘m’
J_--__F

Fig. 2. The pal ygonal network plate of Fig. 1, showing nomenclature

for analysis, Note that 17 refers to the open portion of the network

boundary only.

dielectric-filled space between the plates the electric field must

satisfy

(v’ + L?’)-E. = o (1)

where Q denotes the normalized frequency:

As is well known [6], the magnetic field in the dielectric must

then be given by

H=:(lZ x VWEZ) (3)
jup

where Vw denotes the transverse gradient operator. Above

and below the planar network, there can exist no magnetic

field related to the internal fields. In accordance with Max-

well’s equations, there must therefore flow in the upper plate

a surface current whose density is given by

All fields are understood to be time harmonic. Along the open

plate edge I’, the surface current density cannot have an out-

ward normal component; hence (4) requires that along I’

dEz
—=0. (5)

t)n the other hand, along the section of the periphery covered

by the kth port, say Yk, an outward current is permissible. Its

value, according to (4), must be

Ik=~
s

~s dS.
jwp ,, r3n

(6)

It is frequently most convenient to formulate the problem

not in terms of the field E, but the RF voltage v between cor-

responding points of the upper and lower plates. Let k be the

plate spacing. Since the field has been assumed entirely

z-directed, v = kliz; the two formulations are entirely equiva-

lent. If all ports are taken to be sufficiently narrow and to be

fed by pure TEM mode lines, the following boundary-value

problem results over the

in Fig. 2

(v’ + Q’)v = o,

dv
= o,

z

V = Vk,
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region of the upper plate, as shown

in R (7)

On r (8)

on-y~, k=l,2, . . ..lV. (9)

This is a mixed scalar boundary-value problem in the ordinary

form and may be solved as indicated below.

FORMAL SOLUTION OF THE FIELD PROBLEM

The boundary-value problem defined by (7)–(9) comprises

a homogeneous differential equation in R with inhomogeneous

boundary conditions. For numerical solution, homogeneous

boundary conditions and an inhomogeneous differential equa-

tion are to be preferred. The latter situation may be brought

about by a simple change of variables. Let u denote a func-

tion which satisfies the boundary-value problem

v% = o, in R (lo)

C3’L6
—. o, on r

(?5Z

(11)

%t = Vk, ony& k=l,2, ... N. (12)

Now let

V=u+w. (13)

Substitution in (7)–(9) then produces

(v’ + i-i’)w = – L?%, in R (14)

dw
— = o, on r (15)
d$z

zeJ= 0, On Yk. (16)

In this way, solution of the boundary-value problem (7)-(9)

has been reduced to the solution of two other boundary-value

problems. It remains to write the solutions in such a form as to

exhibit clearly their dependence on the port voltages.

To begin, assume that all port voltages V~ are zero (port

shorted) except for the ith, which will be assumed to have

unity value:

v, = o, k#i

. 1, k=i. (17)

Let the boundary-value problem (10)–(12) be solved, subject

to the restriction (17), i= 1, 2, 3, . . ., N. LetV~ denote the

ith solution. For any possible set of port voltages { l’~ }, the

solution of (10)-(12) is exactly

N

24 = ~ V#i. (18)
i=1

Next, consider the eigenvalue problem defined by

(v’ + Q’)w = o, in R (19)

and the boundary conditions (15)-(16). Let the eigenvalues

and eigenfunctions which satisfy it be fl~ and ~~, i = 1, 2, . . . .

These eigenfunctions may be used as basis functions for

Galerkin projective solution of (14)-(16). Let w be expanded
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(20)

where the Wk are coefficients. Substitution of (18)–(20) into

(14) then produces

k=1 i= 1

which may be written, since ~~ satisfies the Helmholtz eigen-

value problem, as

Let (22) be multiplied by& and integrated over the network

region R. since the functions ~h constitute an orthogonal

family, only the member k = m of the left-hand summation

survives. Therefore

Since the port voltages are assumed to be known, the coeffi-

cients Wh are readily calculable at any frequency. The com-

plete field solution is therefore

It should be noted that the boundary-value problems which

define functions #i and ~h are of a form which can be solved

by existing computer programs with good accuracy [7]. For

purposes of the above discussion, therefore, they may be

regarded as known once the boundary-value problems have

been stated.

ADMITTANCE MATRIX OF THE GENERAL N-PORT

Rarely is the actual RF voltage distribution over the net-

work desired; usually, the designer wishes only to have a

terminal description, preferably as an impedance or admit-

tance matrix. The latter, as will be seen, is readily available.

In terms of the RF voltage, the outward current at the nzth

port (6) reads

(25)

Substitution of (24), followed by some algebraic manipula-

tion, then produces

where the NX N matrices B(k) are defined elementwise by

J -/m 8%

(27)

with f20= O understood and

k=l,2, . . ..N. (28)

The currents in (26) are taken as outward flowing in keep-

ing with the outward normal convention of field theory. Tak-

ing network currents to have inward-directed references, the

admittance matrix of the N-port thus reads

This expression, it may be noted, is in partial-fraction or

Foster canonic form, with the eigenfrequencies of the network

cavity corresponding to the admittance poles. The matrices

l?(k) have as many rows and columns as the network has ports;

they are pure numerics, their elements depending solely on

the geometric shape and size of the network. Consequently,

once the geometric matrices B(k) have been computed, the

network admittance matrix at any frequency may be obtained

to an adequate accuracy by summing the first few terms of

(29)—a trivial computational task.

From the form of (29), it is clear that the admittance

matrix Y cannot be symmetric at all frequencies unless each

and every one of the matrices B(k), k = O, 1, . . 0, is symmetric

also. However, (27) and (28) do not exhibit any symmetry

in the indices m and i. Since the planar network under con-

sideration is passive, linear, and bilateral, symmetry must

obtain. It is therefore desirable to recast the latter two equa-

tions in a form such as to prove symmetry explicitly.

The functions y% are interpolative portwise, according to

(12) and (17); the functions @kall have zero normal derivative

along the network boundary, except at the ports. Therefore

(30)

where

()dR=I’V ;v;
‘i=1

is the boundary of the network. This closed line integral,

taken around the network periphery, may be written in the

form given by Green’s theorem:

$ ~m;ds=f #mV’+. dll – sC#V+V2+mdR
aR R R

In accordance with the definitions given for ~h and $m above,

either ~h or the normal derivative of ~~ is zero at each and

every boundary point. The rightmost integral in (31) there-

fore vanishes. By definition, the functions $m are harmonic;

therefore the middle integral on the right side of (31) vanishes.

Furthermore, & satisfies Helmholtz’s equation in R, so that
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(31) simplifies to and

Substitution of (30) and (32) into (29) now produces the alter-

native form for Bn~(~), k =1, 2, . . . .

where symmetry is obvious.

Symmetry of the matrix B(’JJ can be proved by a similar

development. Equation (30) is still valid if & is replaced by

@~; using Green’s theorem again, one thus obtains

s d+<
—ds=

s
V+j . V+~ dR +

s
+~v’+i dR. (34)

~m dl’z R R

The rightmost term again vanishes, since ii is a harmonic

function. There results, finally,

again clearly symmetric.

COMPUTATIONAL FORMULATION AND TESTS

To obtain an economic computational implementation of

the above analytic development, the finite element method,

using triangular elements, will be employed. Let the planar

network region R be triangulated in such a way that each tri-

angle side along the periphery of R is either entirely along one

port or else touches ports at most at its end points. Let the

functions #i and ok be approximated by continuous piecewise

polynomials on each triangle, as is usual in the finite element

method [7 ]– [9 ]. The functions themselves are then represent-

able by vectors of interpolation coefficients Vi and @k. It is

readily shown [9] that if ~i and & are the polynomial approx-

imations to +i and & respectively, then

and

sV$i . Vij,n dR = vi’SVm. (37)
R

Here primes denote transposition, S is the matrix of Dirichlet

integrals of the interpolation functions associated with the tri-

angulation, while T is the metric of the interpolation func-

tions. These matrices are automatically produced by readily

available Fortran subprograms [7], so that no further theory

need be developed for their construction. Furthermore, the

approximate harmonic functions ~~ and the approximate

eigenfunctions ~~ are determined by the same general-purpose

finite element programs in the form of coefficient vectors ‘3?,

and Qk. Using (33) and (35) as the computational prescription,

one thus obtains

*m’1’@k@k’T@~
&i(k) = _ f)k2 —— > k=l,2, . . ..N (38)

@k’T@~

Clearly, the programming effort here is minimal, if the stan-

dard programs are used without alteration. Their use in this

form is perhaps not quite so economic as might be that of a

special program written particularly to produce admittance

matrices of planar networks. The latter course may have

much to recommend it if large numbers of networks are to be

analyzed, as might be the case in an iterative synthesis pro-

cedure.

The computational procedure given by (29), (38), and (39)

is quite inexpensive to execute. For K terms in the series in

(29), evaluation of the admittance matrix at each frequency

requires approximately ~KiV2 accumulative (multiply-add-

store) operations. For example, for a 30-term expansion

describing a 4-port network, 155 operations are required or

about 5 ms on a reasonably fast computer. The initial over-

head of solving the necessary boundary-value problems and

computing the matrices B(kJ is approximarely 2M3 operations,

where M is the order of the finite element matrices .S and T.

These timings do not depend on network shape, except as it

may be reflected in the matrix order M.

An alternative procedure might be to employ (27) and (28)

directly as computational algorithms. Such a course of action

has the drawback of more extensive programming, but results

in slightly faster execution times. The normal derivatives of

polynomial approximations are clearly also polynomials, so

that all differentiations and integrations can be carried out

exactly (aside from roundoff error). A program to implement

this approach was also written using the normal differentia-

tion operators published recently [IO] in conjunction with

Newton-Cotes quadrature formulas; the latter choice is nat-

ural since the nodes along one triangle edge for the usual

triangle interpolation polynomials coincide with the nodes of

closed-form one-dimensional Newton-Cotes formulas. Not

surprisingly, results obtained in this way show only slight

differences from those obtained from (38) and (39). These are

presumably attributable to differences in roundoff error in-

curred by the two distinct arithmetic processes.

The model problem used for program testing is a rectangu-

lar strip L units long and one length unit wide, with the ports

occupying the full width of both narrow ends. Provided L is

much greater and the substrate thickness much smaller than

unity, such a structure constitutes a good approximation to

an idealized parallel-plate TEM transmission line. The admit-

tance matrix of the latter is easily shown to be

[

—cot QL csc fJL
Y =jYo

csc QL — cot QL1 (40)

where it is assumed, as usual in transmission line theory, that

no lateral variations in voltage can occur. For this problem,

the necessary functions are analytically determinable. It is

easily verified that the eigenfunctions and eigenvalues are

while the port functions are given by

(41)

(42)
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Fig. 3. Normalized admittances for the model Problem. Solid line
denotes Yll, dashed line Yla. Effect oflaterallYvarYin~ ei~enfunctions
is discernible in Ylz. at the higher frequencies.

+2=+ (43)

The matrices B(’CJ arein this case easily evaluated. They are

(44)

(–1)’
B(k) =2

[
1

1
k>l.

L (–1)~ 1 ‘
(45)

Because the quantities involved are all determined as surface

integrals, the corresponding numerical processes are not very

roundoff sensitive. For example, Fig. 3 shows the results ob-

tained computationally for the case L =9. The network was

modeled by six identical right-triangular finite elements.

Several computational tests were carried out, using various

degrees of polynomial approximation. To produce Fig. 3,

second-order polynomials were used, so that the matrices .S

and T were of order 21. Computations were carried out in-

cluding elementary matrices BfOJ–~f15J. Up to the third pole,

YU and Y18 agree with (40) to four significant figures; since all

calculations were carried out with a 24-bit mantissa, this level

of agreement is considered entirely satisfactory. Beyond the

third pole, inclusion in the computational analysis of laterally

varying eigenfunctions ok precludes detailed agreement with

(40)—indeed, it is the approximations inherent in (40), and

not the approximations of the computational analysis which

break down first. This view is substantiated by comparison of

the analytically obtained matrices B@), with corresponding

ones obtained from the finite element analysis.

A variety of different networks has been analyzed using the

new programs. For networks which cannot be treated analyti-

cally, no absolute error assessment can be given. However, the

only mathematical approximations involved in the procedure

are those inherent in finite element solution to find the basis

functions: truncation of the series expansion and approxima-

tion of all functions by interpolation polynomials. It is there-

fore reasonable to expect an overall accuracy consistent with

the accuracy of finite element solution; that is to say, one sub-

stantially higher than warranted by the physical approxima-

tions inherent in the formulation of the problem, as well as the

accuracy achievable in practical microcircuits. The model

problem studies are held to bear out this expectation.

CONCLUSIONS

The method set out in this paper permits admittance

matrices to be computed for arbitrary polygonal planar net-

works. Two distinct advantages over previously existing

techniques render the method attractive. The admittance

matrices are in partial-fraction form and therefore not re-

stricted to any one frequency of operation. Two boundary-

value problems need to be solved initially, but no others are

required subsequently, regardless of frequency or nature of

excitation. The boundary-value problem solution itself is

accomplished by existing finite element programs, so that a

major portion of the required programming work has already

been accomplished.

Suitable programs for admittance matrix production have

been written and tested on simple model problems for which

analytic solutions exist. There appears to be reason to believe

that, as a result of the formulation employed, even relatively

crude finite element models suffice to produce admittance

matrices of an accuracy compatible with the physical approxi-

mations inherent in the problem.
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